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Critical phenomena at perfect and non–perfect surfaces
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Abstract. The effect of imperfections on surface critical properties is studied for Ising models with nearest–
neighbour ferromagnetic couplings on simple cubic lattices. In particular, results of Monte Carlo simulations
for flat, perfect surfaces are compared to those for flat surfaces with random, “weak” or “strong”, interac-
tions between neighbouring spins in the surface layer, and for surfaces with steps of monoatomic height.
Surface critical exponents at the ordinary transition, in particular β1 = 0.80± 0.01, are found to be robust
against these perturbations.

PACS. 05.50.+q Lattice theory and statistics; Ising problems – 68.35.Rh Phase transitions and critical
phenomena – 75.30.Pd Surface magnetism

1 Introduction

Critical phenomena at perfect, flat surfaces of three–di-
mensional crystals have attracted much interest. In partic-
ular, surface critical exponents have been estimated, both
theoretically and experimentally. The general agreement
is quite satisfactory [1–3].

Nevertheless, there are still some open questions. For
example, the critical exponent β1 of the surface magneti-
zation at the ordinary transition in the Ising universality
class seems to be known only to an accuracy of about ten
percent, with β1 ≈ 0.80 ± 0.05, obtained from large scale
Monte Carlo simulations [4,5], renormalization group cal-
culations [6,7], and experiments on magnets and alloys
such as FeCo [3,8].

In addition, the role of surface imperfections, unavoid-
able in real materials, on critical properties has been stud-
ied for three–dimensional systems in much less detail (for
exceptions, see, e.g., mean–field theory [9] and renormal-
ization group arguments [10] on surface layers with ran-
domness), especially in simulations.

The aim of this article is twofold. Firstly, the values
of critical surface exponents for perfect surfaces at the
ordinary transition in Ising systems have been reexam-
ined by computing effective exponents allowing to moni-
tor easily the approach to the true asymptotic behaviour
and to refine previous estimates on the asymptotic ex-
ponents, e.g., on the value of β1. Secondly, we have also
performed Monte Carlo simulations for two types of im-
perfections, corresponding to simple cases of amorphous
and corrugated surfaces, see Figure 1. The amorphous sur-
face is mimicked by choosing randomly “weak” or “strong”
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nearest-neighbour ferromagnetic couplings between spins
in the flat surface layer. A corrugation is introduced in a
simple manner by placing a terrace of monoatomic height
on half of the surface; the magnetization at the step edge
is expected to reflect most strongly this form of pertur-
bation as compared to the magnetization at the perfect
surface.

The article is organized accordingly, concluded by a
brief summary.

2 Ising model with a perfect surface

To simulate the critical behaviour of the perfect surface,
we study Ising models on simple cubic lattices with free
boundary conditions for the top and bottom (surface) lay-
ers and periodic boundary conditions otherwise. The spins
are denoted by Sxyz (± 1), situated at lattice sites (x, y, z),
where z numbers the layers, z = 1, 2, ...,M , with K × L
spins per layer (x = 1, 2, ...,K; y = 1, 2, ..., L). Interac-
tions are restricted to nearest–neighbours. Two different,
ferromagnetic couplings may occur, depending on whether
the neighbouring spins are at the surface (z = 1 or M),
Js > 0, or not, Jb > 0, see Figure 1a.

The phase diagram of the corresponding semi–infinite
(K,L,M −→ ∞ ) Ising model is well established [1,2]. If
the ratio of the surface coupling Js to the bulk coupling
Jb, r = Js/Jb, is sufficiently weak, the system undergoes
at the bulk critical temperature, kBTc/Jb ≈ 4.5115 [11,
12], an “ordinary transition”, with the bulk and surface
ordering occurring at the same temperature, Tc. Beyond
a critical ratio, r > rc ≈ 1.50 [5], the surface orders at a
higher temperature, Ts > Tc, followed by the “extraordi-
nary transition” of the bulk at Tc, see Figure 2. At the crit-
ical ratio rc, one encounters the “special transition point”,
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Fig. 1. Geometry and interactions of the Ising models for (a)
the perfect surface, and surfaces with (b) random couplings
and (c) steps.
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Fig. 2. Schematic phase diagram for the semi–infinite three–
dimensional Ising model; r denotes the ratio of the surface to
the bulk couplings.

with critical properties of the surface transition deviating
from those at the ordinary or the distinct surface transi-
tion.

The aim of our simulations has been to reexamine the
surface critical properties at the ordinary transition, be-
cause of the rather wide spread of supposedly accurate
and reliable estimates of the critical exponents, especially
of the exponent of the surface magnetization, β1.

To study both surface and bulk properties, we com-
puted various quantities, among others the profiles of the
magnetization per layer, m(z), and the susceptibility per
layer, χ(z), defined by

m(z) =
1

KL

〈∣∣∣∣∣∑
xy

Sxyz

∣∣∣∣∣
〉

(1)

and

χ(z) =
KL

kBT

〈( 1

KL

∑
xy

Sxyz

)2〉
− (m(z))2

 . (2)

For z = 1 (or M), one obtains the standard surface
magnetization m1 = m(z = 1) = m(z = M) and the
susceptibility χ11 = χ(z = 1) = χ(z = M). χ11 describes
the response of the surface magnetization to a surface field
[1,2]. The response of m1 to a bulk field is obtained from
χ1 (which we also computed), given by [13]

χ1 =
KLM

kBT

[〈
1

2KL

∣∣∣∣∣ ∑
surfaces

Sxyz

∣∣∣∣∣ 1

KLM
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∣∣∣∣∣
〉

−m1
1

KLM

〈∣∣∣∣∣∑
sites

Sxyz

∣∣∣∣∣
〉]

. (3)

Most of the Monte Carlo simulations were performed
using the one–cluster flip algorithm [14], augmented by
runs using single–spin flips. System sizes ranged from K×
L×M = 25×25×20 to 150×150×120, thereby attempt-
ing to avoid finite–size effects on approach to the phase
transition; i.e. computing properties of the semi–infinite
system. To equilibrate the system and to extract thermal
averages, we usually generated a few 105 clusters, and de-
termined error bars from typically 5 realizations. Various
ratios r = Js/Jb of the surface to the bulk couplings were
chosen, in between r = 0 and 2.0, studying predominantly
the ordinary transition at r = 1.0.

Typical magnetization profiles are depicted in Figure 3,
at r = 1.0 and T < Tc. The magnetization increases from
its surface value, m1, to the bulk value mb, at distances
superceeding the bulk correlation length. To avoid finite–
size effects, K = L and M have to be sufficiently large.
Firstly, M may be chosen such that the profile m(z) dis-
plays a pronounced plateau around the center of the sys-
tem. Monitoring then the K–dependence of m1, one may
determine the suitable size of the Monte Carlo system.
In Figure 3, we included also the value of the bulk mag-
netization, as had been obtained in extensive and highly
accurate previous simulations [12], thereby giving another
check on the quality of the present data.
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Fig. 3. Magnetization profiles m(z) for the perfect surface
with Js = Jb at, from bottom to top, kBT/Jb = 4.49, 4.45,
and 4.35, for systems of size 100 × 100× 80. The dashed lines
denote the bulk values [12].
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Fig. 4. Effective exponent of the magnetization per layer,
βeff(z, t), of the Ising model with a perfect surface, with r = 1.0
at, from bottom to top, kBT/Jb =4.25, 4.425, and 4.46, for sys-
tems of size 50× 50× 40.

In order to estimate the critical exponents of the mag-
netization, we define an “effective exponent” βeff(z, t) by

βeff(z, t) = d ln(m(z))/d ln(t) (4)

where t = |T − Tc|/Tc is the reduced temperature. Cer-
tainly, on approach to Tc, t −→ 0, βeff becomes the asymp-
totic exponent β(z), with β(z = 1) = β1 being the critical
exponent of the surface magnetization.

Results for βeff(z, t) are shown in Figure 4, at fixed
temperatures, t, and in Figure 5, at fixed distances from
the surface, z. Because the simulations are performed at
discrete temperatures, ti, βeff is replaced by

βeff(z, t) = ln(m(z, ti)/m(z, ti+1))/ ln(ti/ti+1) (5)
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Fig. 5. βeff (z, t) in the perfect case, with r = 1.0, at fixed
distances from the surface, z, as a function of reduced temper-
ature t, for systems of size 25×25×20 (triangles), 50×50×40
(diamonds), 100×100×80 (squares), and 150×150×120 (cir-
cles). The dashed line follows from bulk Monte Carlo data [12].

with t = (ti + ti+1)/2. Very accurate Monte Carlo data
are required to get reliable estimates. Error bars may be
assigned to the effective exponents in various ways. We
adopted the form

δβeff = |δm(z, ti)/m(z, ti)|+ |δm(z, ti+1)/m(z, ti+1)|,

where δm(z, ti) follows from the variance of the magne-
tization data due to the different realizations, i.e. Monte
Carlo runs with different random numbers. These error
bars are rather conservative as compared, for instance, to
those resulting from standard error propagation assump-
tions.

From Figure 5, one sees that the effective exponent of
the surface magnetization βeff(z = 1) increases almost lin-
early with t over a wide range of temperatures. Note that
we omitted, for clarity, data which are obviously affected
by finite-size effects. A linear extrapolation to the criti-
cal point yields β1 = 0.80 ± 0.01. This value is expected
to correct and refine the previous estimates [3–8], ranging
from 0.75 [5] to 0.845 [7]. It is nicely consistent with the
value estimated from a log-log plot for simulational data
in between 0.01 < t < 0.1, with β1 = 0.78± 0.02 [4] (be-
ing, presumably, slightly too low, because the rise of βeff

with smaller t had been neglected).
In the non–asymptotic region, the surface magnetiza-

tion may be cast in the form m1 ≈ m0t
β1(1 + atx). From

the data depicted in Figure 5, the effective exponent x of
the corrections to scaling has been estimated to be close
to one (x ≈ 0.95), in the range 0.02 < t < 0.1.

Moving from the surface into the bulk, the effective
exponent is usually lowered, see Figure 4. Eventually, one
may observe an interesting crossover phenomenon, as
shown in Figure 5. Away from criticality, Tc, and suffi-
ciently deep in the bulk (e.g. z = 10), the effective ex-
ponent follows closely the behaviour of the effective bulk
critical exponent, as obtained from the corresponding
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Fig. 6. Susceptibility per layer χ(z) in the perfect case with
r = 1.0 at, from bottom to top, kBT/Jb = 4.2, 4.35, 4.45, and
4.47, for systems of size 50× 50× 40.

magnetization data of the Ising model with full periodic
boundary conditions [12]. However, on approach to Tc,
when the bulk correlation length becomes comparable to
the distance from the surface (= 10 lattice spacings, in
the example), βeff crosses over to its surface value. In-
deed, at each distance (large, but finite) from the surface,
one reaches, sufficiently close to Tc, the surface exponent
β1 ≈ 0.80 instead of the bulk exponent β ≈ 0.32.

The susceptibility per layer, χ(z), displays close to Tc,
at the ordinary transition, r = 1.0, a non–monotonic be-
haviour, see Figure 6, with the maximal value shifting to-
wards the center of the system as the temperature gets
larger. In analogy to (5), one may define an effective expo-
nent γeff(z). In the bulk, that exponent is clearly positive,
with a value around one at t ≈ 0.1, rising quite sharply
to at least about 1.5 on further approach to Tc (finally,
finite–size effects tend to decrease the effective exponent
again). However, χ remains, at Tc, finite at the surface,
z = 1, with a cusp-like singularity, i.e. a negative critical
exponent γ11, by approaching criticality from high tem-
peratures [1,2]. To estimate γ11, we determined the tem-
perature Tm at which, for a finite system (K,L,M), χ11

exhibits its maximum, χm
11. A suitably defined effective

exponent is

(γ11)eff(tm) = −d ln(χm
11 − χ11(tm))/d ln(tm) (6)

with tm= |T − Tm|/Tm. Obviously, (γ11)eff −→ γ11 as
K,L,M −→ ∞, Tm −→ Tc, and tm −→ t −→ 0. Based
on our Monte Carlo data at r = 1.0, this ansatz leads
to a rather rough estimate of γ11, circumventing finite–
size effects again, with γ11 = −0.25± 0.1. This value may
be compared to results of previous simulations [4], where
only the sign of γ11 was identified, and to predictions of
renormalization group calculations [1,2,6,7], γ11 ≈ −0.33.

The critical exponent for the response function of the
surface magnetization to a bulk field, χ1, may be esti-
mated in a more standard and straightforward way, by

computing in analogy to (5) the effective exponent

(γ1)eff(t) = −d ln(χ1(t))/d ln(t). (7)

At r = 1, that exponent decreases with t, on approach to
Tc, approximately linearly in the range 0.02 < t < 0.1. A
linear extrapolation yields the asymptotic exponent γ1 =
0.78± 0.05, in agreement with previous estimates [1,2,4].

We performed additional, albeit much less extensive
simulations near the special point, r = rc. In particu-
lar, at r = 1.50, βeff(z = 1) is found to increase more
strongly than linearly, at least down to t = 0.02, so that
an extrapolation to t −→ 0 is not obvious. A reasonable
estimate seems to be β1 = 0.23 ± 0.01, in good agree-
ment with a fairly recent large scale Monte Carlo study,
β1 = 0.237± 0.005 [5], but a little bit lower than the field
theoretical value, β1 ≈ 0.26 [7]. Similarly, our estimate for
γ1(= 1.5 ± 0.1) is slightly higher than that suggested by
a renormalization group calculation, γ1 ≈ 1.30 [7]. In any
event, the agreement is reasonably satisfactory.

Beyond the special point, r > rc, the critical expo-
nents at the surface transition, Ts > Tc, are believed to
be in the universality class of the two–dimensional Ising
model [1,2]. Indeed, our Monte Carlo data are consistent
with that prediction. At this point, we draw attention to
recent Monte Carlo simulations on short-range correlation
functions near the surface transition, Ts, which have been
performed to interpret spin-polarized photoelectron data
of some magnets [15].

3 Surface with random couplings

To mimic an amorphous surface, possibly due to
(non-)magnetic impurities at the surface of the crystal,
we replace the unique surface coupling Js by two random,
ferromagnetic interactions, being either “strong”, Js1, or
“weak”, Js2, i.e. Js1 > Js2 > 0, see Figure 1b. Note that
an alternate form of randomness, namely random surface
fields, had been considered before using Monte Carlo tech-
niques [16].

Following detailed simulations of the two-dimensional
dilute Ising model [17,18], both couplings were assumed
to occur with the same probability. Then the ratio d =
Js2/Js1 measures the degree of dilution: d = 1 corresponds
to the perfect case, and d = 0 to the percolation limit. We
performed most of the simulations at d = 1/10, where crit-
ical dilution effects are expected to be easily detectable,
because the crossover length to the dilution dominated
critical regime is only a few lattice constants [17]. The ra-
tio of the surface to bulk couplings r = (Js1 + Js2)/(2Jb)
was varied in between 1.0 and 3.5, to study critical phe-
nomena at the ordinary transition and to locate the spe-
cial point, r = rc(d). For instance, r = 1.0 is realized
when Js1 = (20/11)Jb and Js2 = (2/11)Jb, for d = 1/10.
The sizes of Monte Carlo systems and lengths of runs were
chosen like in the perfect case.

Because the critical temperature (thence, the effective
interaction) of the corresponding two–dimensional system
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Fig. 7. Surface magnetization m1 versus temperature, for the
perfect and random surface, at r = 1.0, for systems of size
50× 50× 40.

is reduced by randomness, at given mean coupling (Js1 +
Js2)/2 [17], the special point may be argued to be shifted
towards larger ratios rc, as dilution is increased (indeed,
at d = 1/10, for example, we locate rc at 1.70 ± 0.1, see
below, to be compared with 1.50 for the perfect surface).
Accordingly, at r = 1.0 and d = 1/10 the ordinary transi-
tion is encountered. We shall discuss our findings for that
case first, comparing it to results for the perfect surface,
d = 1. Certainly, the transition temperature Tc is not af-
fected by the randomness in the surface couplings.

At fixed temperature, T < Tc, the dilution tends to de-
crease the magnetization m(z) at and near the surface, for
distances small compared to the bulk correlation length.
This trend is shown in Figure 7 for the surface magnetiza-
tion, m1. At first sight, perhaps, somewhat surprisingly,
the energy per layer E(z) is also lowered compared to
the perfect situation, but only in the surface layer. This
behaviour may be explained by the ordering in clusters
of strongly interacting, Js1(> Js), spins, with a weak cou-
pling between these, possibly oppositely oriented, clusters.

Despite the obvious drop in m1 due to the surface ran-
domness, the ratio of m1(d = 1/10)/m1(d = 1) is almost
constant, about 0.9, over a wide range of temperatures,
from kBT/Jb ≈ 3.4 up to Tc, with a very shallow minimum
near kBT/Jb = 3.8. Therefore, the effective critical expo-
nent βeff(z = 1), see equation (5), follows very closely that
of the perfect case, as shown in Figure 8, leading to the
same estimate for β1 = 0.80±0.01, obtained from a linear
extrapolation towards Tc of the data for the effective ex-
ponent. Thence, the randomness in the surface couplings
seems to be irrelevant for the asymptotic behaviour of the
surface magnetization, and of minor importance even for
the corrections to scaling. Similarly, the estimate for γ1 is
compatible with the one in the perfect case. Obviously, the
numerical findings provide support to the conjecture by
Diehl and Nüsser, suggesting that short-range correlated
dilution of surface interactions is irrelevant for surface crit-
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Fig. 8. Effective exponent of the surface magnetization,
βeff(z = 1), for a surface with random couplings, with Js2 =
Js1/10 and r = 1.0.
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Fig. 9. Phase diagram for the three-dimensional Ising model
with random couplings in the surface, Js2 = Js1/10, around the
special point (at rc = 1.70 ± 0.1, as indicated in the figure).

ical exponents, based on a Harris-type criterion [19] and
perturbation-theory to first–order [10]. — The findings are
corroborated by exact and simulational results on two–
dimensional Ising models with surfaces, where β1 is 1/2,
independent of surface dilution [20,21]. — Interestingly
enough, in three–dimensional Ising models, random sur-
face fields seem to be irrelevant as well [16].

To locate the special point, r = rc, one may determine
the surface transition temperature, Ts. At r < rc, Ts =
Tc ≈ 4.5115 Jb/kB, while Ts(r) > Tc otherwise. Standard
procedures may be applied, e.g., by analysing the finite–
size dependence of the turning point in m1. The resulting
phase diagram near the special point, for d = 1/10, is
depicted in Figure 9.

However, close to the special point, Ts deviates only
minutely from Tc, and ambiguities may arise. To get eas-
ily a lower bound for rc, one may monitor effective expo-
nents, e.g., βeff(z = 1). For instance, in the random case
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with d = 1/10, at r = 1.53, i.e. slightly above rc(d = 1),
βeff rises sharply at t < 0.05, being consistent with the
asymptotic value β1 ≈ 0.80. Even at r = 1.7, the effective
exponent still tends to increase on approach to Tc, to a
value close to that of the perfect surface at the special
transition, β1 ≈ 0.23. — An estimate for an upper bound
for rc may be obtained by assuming Ts = Tc, and looking
for inconsistencies in the critical exponents. In particular,
such an inconsistency occurs when βeff(z = 1) becomes
smaller than 1/8. Based on that kind of analysis, in addi-
tion to the standard procedures, we reached at an upper
bound rc < 1.8. In summary, a reasonable estimate of
rc(d = 1/10) seems to be 1.70 ± 0.1. To refine it, more
sophisticated methods are needed [5], which, however, are
beyond the scope of this study. The important point is to
notice that rc shifts towards a higher value when diluting
the surface interactions.

4 Surface with steps

To study effects of corrugation on surface critical phenom-
ena, we shall consider here thermal properties at a step of
monoatomic height, superimposed on a perfect surface.

As in the perfect case, we consider systems with K×L
spins per (x, y) layer, with the exception of the topmost
layer, z = 0, where spins are restricted to the center half,
forming a strip-like terrace of monoatomic height along
the y–direction, with two bordering steps, see Figure 1c.
At the bottom, z = M , the surface is assumed to be flat.

Three kinds of interactions may be introduced. Spins
at the step-edges are coupled ferromagnetically, Je > 0.
Other spins at the top (or bottom) of the system, having
no upper (lower) neighbouring spins, interact through the
surface coupling Js > 0, while all the remaining spins
are coupled by Jb > 0. The phase diagram in the (r =
Js/Jb, kBT/Jb)–plane is expected to be identical to that
of the perfect surface [1], because the couplings at the one–
dimensional step–edges do not support additional long–
range ordering.

To quantify the influence of the additional terrace, we
calculated the magnetization per row

m(x, z) =
1

L

〈∣∣∣∣∣∑
y

Sxyz

∣∣∣∣∣
〉
. (8)

The magnetization at the step–edges, say, x = xs1, xs2,
m11 = m(xs1, z = 0) = m(xs2, z = 0) is of particular
interest, deviating possibly most significantly from the
magnetization of the perfect surface, m1. Certainly, the
aim is to identify the behaviour at a single step, i.e. the
width of the terrace has to be large compared to the rel-
evant correlation lengths, as it is the case in the limit of
the semi–infinite system, (K,L,M −→ ∞ ). Therefore,
careful finite–size analyses are needed again, considering
the effect of all three linear dimensions, K,L,M , on the
quantities of interest, especially m11. For instance, on ap-
proach to criticality, Tc, the length of the step, L, is of
importance [21]. To monitor and, eventually, circumvent
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Fig. 10. Profiles of the magnetization per row m(x, z) for the
Ising model with a terrace of monoatomic height on the surface,
with Je = Js = Jb, at T = 0.95Tc, for systems of size 80×80×
40.

finite–size effects, K ranged from 80 to 120, L from 80 to
240, and M from 40 to 80. As before, we used the one–
cluster–flip Monte Carlo algorithm, generating a few 105

clusters, and averaging typically over about 5 realizations.

In Figure 10, the magnetization per row, m(x, z), is
depicted at fixed temperature near the ordinary transi-
tion, taking Je = Js = Jb, for various layers, starting at
the top, z = 0, and moving into the bulk. The magne-
tization is minimal at the step–edge, due to the reduced
coordination number at the step. To avoid finite–size ef-
fects, the system size has to be chosen in such a way, that,
e.g., m(x, z) acquires (i) the numerically accurately known
bulk magnetization [11,12] sufficiently far away from the
surface, and (ii) the correct surface magnetization, m1, at
the bottom, m(x,M), as determined in the perfect case.
Furthermore, the influence of the length of the step, L,
on the step–edge magnetization needs to be scrutinized,
thereby monitoring the impact of bulk and surface corre-
lation lengths.

The effective exponent of the step–edge magnetization,
(βeff)11(t), defined in complete analogy to (5), is shown
in Figure 11. In the figure, Monte Carlo data affected by
finite–size effects are included, characterized by a decrease
in the effective exponent as one goes closer to Tc. As ob-
served readily, finite–size effects play an important role for
unusually large systems even quite far away from Tc.

In the following we consider only the data unperturbed
by finite–size effects. Comparing to Figure 5, one notices
an enhancement of the exponent (βeff)11(t), at fixed dis-
tance from Tc, i.e. at fixed t, relative to the effective expo-
nent of the surface magnetization. In any event, (βeff)11(t)
seems to vary on approach to criticality almost linearly.
Based on a linear extrapolation, the asymptotic value of
β11 may be estimated to be 0.80±0.015, in agreement with
that of the magnetization of a flat surface. In contrast
to the case of random couplings, corrections to scaling
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Fig. 11. Effective exponent of the step–edge magnetization,
(βeff)11(t), as a function of reduced temperature t, with Je =
Js = Jb, for various system sizes.

of the magnetization at the step–edge are distinctively dif-
ferent from those of m1 for the perfect surface.

Our result for β11 on surfaces with steps may be ar-
gued to be in accordance with the conjecture of Diehl and
Nüsser, stating that smooth corrugations correspond to ir-
relevant perturbations, in the sense of the renormalization
group theory [10]. The conjecture, however, refers merely
to the critical behaviour of the entire surface, and may
not necessarily apply to the step–edge magnetization.

5 Summary

Using Monte Carlo techniques, we studied critical prop-
erties at the ordinary transition, the special point, and
the distinct surface transition of semi–infinite Ising sys-
tems on cubic lattices with nearest–neighbour ferromag-
netic interactions. In particular, the influence of random-
ness and corrugations on the critical exponents at the or-
dinary transition has been investigated.

Especially the critical exponent of the surface magne-
tization has been shown to be robust against both types
of perturbations, as mimicked by random “strong” and
“weak” couplings in the surface, and by steps of monoato-
mic height. Its value is always 0.80 ± 0.01(5). Even cor-
rections to scaling are affected only rather mildly by the
dilution, in contrast to the corrugated case comparing
the step–edge magnetization to the surface magnetization,
where the correction terms to the asymptotic power–law
are found to differ appreciably.

Our Monte Carlo findings support and extend con-
jectures of Diehl and Nüsser, based on renormalization
group arguments, suggesting the irrelevant character of
these surface perturbations at the ordinary transition. The
findings may also be helpful in interpreting experiments
on surface critical phenomena, by showing that different
“dirt effects” are of minor importance for the asymptotic
critical exponents.

Note added in proofs

H.W. Diehl (preprint) obtained, using Griffiths inequali-
ties, bounds on the critical exponent β1 for the non-perfect
cases. The results agree with our numerical findings.

We should like to thank K. Binder, H. W. Diehl, S. Dietrich, E.
Eisenriegler, D. P. Landau, and U. Ritschel for very useful dis-
cussions. The interactions with them at the “Landau-Seminar”
in Bad Honnef and at the CECAM-Workshop in Lyon, Septem-
ber 1997, have been most helpful.
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G. Grübel, Phys. Rev. Lett. 78, 3880 (1997); see also U.
Ritschel, Phys. Rev. B 57, 693 (1998).

9. T. Kaneyoshi, Introduction to Surface Magnetism (Boca
Raton, Ann Arbor, Boston: CRC Press, 1991).

10. H.W. Diehl, A. Nüsser, Z. Phys. B 79, 69 (1990).
11. A.M. Ferrenberg, D.P. Landau, Phys. Rev. B 44, 5081

(1991).
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